Air Toxics Methods Development Update

Jim Homolya EPA, OAQPS, Measurement Technology Group 2006 National Air Monitoring Conference Las Vegas, NV November 6-9, 2006

Introduction-Acrolein

- Acrolein is listed as one of the core NATTS compounds
- Because of its reactivity, acrolein in ambient air samples presents an analytical challenge
- Penetrates biological membranes, strong dermal irritant, inhalation irritant and possible human carcinogen
- EPA Screening level 0.002 μg/m³
- Non-Chronic risk levels ATSDR Short Term MRL 0.11 µg/m3, CalEPA Acute REL at 0.19 µg/m3

Possible Active Methods of Acrolein Determination

- Air samples collected on Dinitrophenylhydrazine (DNPH) cartridges, analyzed by Method TO-11A on an HPLC
- Air samples collected in stainless steel canisters, analyzed by Method TO-15 on a GC/MS SIM

Acrolein Determination by Method TO-11A

- Method TO-11A is based on a specific reaction of organic carbonyls with the DNPH on the sample cartridges in the presence of a strong acid
- Samples are extracted within 2 weeks of sampling
- Extracts are analyzed within 30 days of sample preparation

Potential Problems with Method TO-11A for Acrolein

- Acrolein appears to break down on the DNPH cartridge to form a second derivative peak after sampling
- The second peak coelutes with a Method TO-11A target peak

Method Development – Method TO-15

- Simulated "real world" conditions by using a gaseous blend of carbonyls
- Blended a 100 ppbv ±10% gas with clean humidified air to a nominal concentration of 5.92 ppbv
- Collected duplicate samples through a canister sampler
- Recovered 90% of acrolein following Method
 TO-15

Acrolein using Method TO-15 (SIM Mode)

- Monitor Ions 56 (Quant Ion), 26, 27, 29, and 55
- Acceptable calibration from 0.25 ppbv to 15.0 ppbv
- 2006 Method Detection Limit of 0.08 ppbv (0.18 μg/m³)

Stability Study of Acrolein in Canister Samples

- Sixteen acrolein samples were prepared in canisters
- Low and high humidity
- Low and high concentration
- Samples were analyzed on Days 0, 7, 14, 21, 28

Acrolein Initial Stability Study

- Rhode Island Dept of Health Labs reported increase immediately after sampling
- Performed short-term acrolein stability study
- Took grab samples on an overpass above a heavily traveled highway
- Recoveries for 1,3-Butadiene also evaluated because of its close chemical structure to acrolein
- Samples with nothing detected held for 1 week with no increase in detection (still not detected).

Compendium Method Comparison

- Comparison of Methods TO-15 and TO-11A using actual NMP samples from across the country
- Acrolein recoveries are clearly much higher for Method TO-15 than Method TO-11A

Method TO-15 Field Sample Results for Acrolein

- 19 Sites from July '05 to Sept '06
- 2,044 acrolein measurements
- 569 of these were from samples during Hurricane Katrina clean-up
- 59% of the 2,044 were detects
- 1.7% of the 2,044 had detections less than the MDL
- Average concentration was 1.49 μg/m³
- Median concentration was 1.11 μg/m³

Conclusions

- Higher acrolein recovery using Method TO-15
- Audit, collocate, duplicate, and replicate samples pass NATTS data quality objectives
- Results from UATMP and Katrina are relatively the same and show similar trends
- Need another years data to see if trends are consistent

Introduction-Chromium 6

- Chromium is present in several oxidation states
- Cr³⁺ is naturally occurring, environmentally pervasive and a trace element in man and animals
- Cr⁶⁺ is anthropogenic from a number of commercial and industrial sources

Hexavalent Chromium Health Effects

- Penetrates biological membranes
- Identified as an industrial toxic and cancer substance
- Inhalation irritant and associated with respiratory cancer
- EPA Screening level 0.000083 μg/m³ or 0.083 ng/m³
- Intermediate Risk Factor –
 1 µg/m³ or 1000 ng/m³

Method Development

- Provide cleanest filter media
- Provide filter media that does not affect background
- Determine possible interfering elements
- Stabilize the Cr⁶⁺ on the filter
- Recover spiked Cr⁶⁺ on recommended filter media

Filter Media Determination

- Cellulose
- Binderless Quartz
- Teflon®
- Polyvinyl Chloride (PVC)

Quality Control Criteria

- Relative Percent Difference (RPD) ± 25%
- Coefficient of Variation (CV) ±15%
- Percent Recovery ± 80%
- Analyzed 4 sets to statistically achieve QA controls

Interfering Element Check

- Filters were spiked with 10 total ng of Cr⁶⁺.
- Four sets of filters were spiked with 10 total ng of Cr³⁺, Fe, and Mg.
- Recoveries were within 95.3% ± 13%.

These elements do not pose any interference for the analysis of Cr⁶⁺.

ERG Cr⁶⁺ Sampling System

Sampling Setup

- One filter unspiked (Sample)
- One filter spiked at 2.5 ng
- One trip blank
- One filter spiked at 2.5 ng and left in the filter container - Method Spike

All Samples did not detect Cr⁶⁺.

2005 Field Site Sample Results

- 1,209 Cr⁶⁺ measurements were detected at the
 22 NMP
- 209 of these were taken at 3 sites during the clean up after Hurricane Katrina
- Of the 1,209 Cr⁶⁺ measurements, 64% of these results were detects and 3% of these concentrations were below the MDL
- Average Cr⁶⁺ concentration was 0.027 ng/m3.

Conclusions

- Cellulose filters collect Cr⁶⁺ more efficiently then Teflon[®]
- Sample collection using sodium bicarbonate coated cellulose filters is recommended
- Filters must be acid washed before coating them with sodium bicarbonate to prevent Cr⁶⁺ background

Conclusions, Cont.

- Samples must be retrieved from the field one day after the sample has been collected to prevent Cr⁶⁺ loss
- Samples must be frozen after collection to reduce the risk of Cr⁶⁺ loss
- Collocate and replicate samples pass
 NATTS data quality objectives

Acknowledgments

- US EPA, OAQPS
 - Mike Jones
 - Dennis Mikel
- ERG
 - Mitch Howell
 - Donna Tedder
 - Ray Merrill
 - Julie Lopez